COURSE DISCRIPTION

1. GENERAL

SCHOOL	ENVIRONMENT, GEOGRAPHY AND APPLIED				
30.1002	· · · · · · · · · · · · · · · · · · ·				
2524254545	ECONOMICS				
DEPARTMENT	GEOGRAPHY				
LEVEL OF COURSE	Undergraduate				
COURSE CODE	ΓΕ0901		SEMESTER 5 th		
COURSE TITLE	OCEANOGRAPHY				
STRUCTURE OF TEACHI	IING ACTIVITIES		TEACHING HOURS PER WEEK		NUMBER OF CREDITS ALLOCATED (ECTS)
Lectures and Laboratory Classes		3		5	
TYPE OF COURSE	Compulsory				
PREREQUISITES	-				
LANGUAGE OF INSTRUCTION	GREEK				
COURSE OFFERED TO ERASMUS STUDENTS	YES (in English if required)				
(URL)	https://www.geo.hua.gr/en/module/oceanography/				

2. EXPECTED LEARNING OUTCOMES

Learning outcomes

Describe the objectives of the course as well as the expected learning outcomes

The course "Oceanography" aims to help students understand the physical, chemical, geological, and biological processes in the global ocean. Additionally, it seeks to provide an understanding of the evolution of the global ocean over time, its characteristics, and its significance in shaping the climate, biotic parameters, and the natural and human-made environment.

In the context of this course, the student: • Acquires knowledge that enables them to approach fundamental oceanographic issues,

- Learns to choose the methods and techniques that will allow them to study marine and oceanic physical systems as well as human impacts on them,
- Develops skills in designing bathymetric sections and utilizing relevant online applications,
- Familiarizes themselves with the processing and interpretation of primary data, and
- Draws conclusions regarding the physical and chemical properties of ocean waters.

The course aims to:

- Search, analyze, and synthesize data and information, using the necessary technologies
- Independent work
- Respect for the natural environment

3. COURSE CONTENTS

Theory: The course is structured into three sections:

- Introduction of students to the scientific field of Oceanography. Analysis of the
 geographic and geomorphological features of oceans and seas, as well as the
 physicochemical properties of seawater. Special emphasis is placed on the surface
 and deep distribution of the physicochemical properties of seawater and their
 temporal variations. A brief reference is made to the technological tools available to
 scientists for monitoring seawater properties and mapping the geomorphology of
 the seabed.
- 2. Ocean circulation and the natural mechanisms that drive it. A brief overview of the structure of the atmosphere and hydrosphere and wind circulation. Focus on ocean circulation through marine currents, and analysis of ocean waves and tides.
- 3. Discussion of the marine living environment and pollution from human activities. Understanding the degree of interaction between the geomorphology of the ocean floor, physicochemical conditions, marine organisms, and consequently, humans through the food chain.

Laboratory Exercises:

- Exercise related to bathymetry and the geomorphology of marine areas.
 Specifically, the creation of a bathymetric map for a selected marine area and the design of bathymetric sections. Design of bathymetric sections, utilizing open web sources, in selected areas of the Mediterranean and Greek seas and identifying the main geomorphological characteristics of the underwater terrain. Use of freely available seabed and ocean floor topography from the European marine areas website http://portal.emodnet-bathymetry.eu/, created by the EU for the study of Europe's seas.
- 2. Reading, description, and commentary on global distribution maps of sea surface temperatures and salinity. Construction of isotherm curves based on temperature measurement data at various depths and commentary on its depth distribution. Determination of the thickness of the surface mixed layer, the thermocline zone, and identification of current types. Construction of equal salinity curves based on temperature measurement data in areas of interest, and identification of areas with high salinity. Retrieval of temperature and salinity data using open web sources in selected areas of the Mediterranean and Greek seas http://portal.emodnet-bathymetry.eu/.
- 3. Study of wave activity in coastal areas. Calculation of wave breaking height and depth for waves propagating perpendicularly to the isobaths, as well as for waves propagating at an angle to the isobaths.
- 4. Searching for sea-level fluctuations (daily, weekly, and monthly) from the UNESCO global and regional sea-level monitoring website, which provides real-time information http://www.ioc-sealevelmonitoring.org/map.php. Observations from six different stations and correlation of measurements with the global distribution of tidal range. Study of a scientific article (in Greek) related to sea-level rise, which students can understand and answer simple questions.

4. TEACHING AND ASSESSMENT METHODS

TVDE OF LEGILIDES					
TYPE OF LECTURES	 In class lectures 				
	 Laboratory Lectures and Practice 				
ICT USE	Use of electronic tools in the teaching of both the				
	theory and laboratory training (utilization of the				
	internet). Utilization of the (eclass) platform both for				
	education and communication with students.				
TEACHING STRUCTURE	Activity	Hours per semester			
	Lectures	13			
	Laboratory	26			
	Weekly assignments	41			
	Studying – personal work	45			
	TOTAL	127			
ASSESSMENT METHODS Evaluation methods:					
	1. Successful written final exam on the theory of				
	the course, which includes a multiple-choice				
	test (70%)				
	2. Evaluation of laboratory exercises (30%)				
	The evaluation criteria are subject to change and will				
	be announced at the beginning of the semester.				
	5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				

5. RECOMMENDED READING

- Αλμπανάκης, Κ., 1999. Μαθήματα Ωκεανογραφίας. University Studio Press.
- Garrison T., 2007. Oceanography: an invitation to marine science. Thomson Brooks/Cole, Belmont, USA.
- Θεοδώρου, Α., 2004. Ωκεανογραφία: Εισαγωγή στο Θαλάσσιο Περιβάλλον.
 Εκδόσεις Αθ. Σταμούλης.
- Καρύμπαλης, Ε., 2010. Παράκτια Γεωμορφολογία. Εκδόσεις Ιων.
- Thurman, H.V., 2001. Introductory Oceanography. Prentice Hall.

Relevant Scientific Journals:

- Mediterranean Marine Science, Hellenic Centre for Marine Research
- Regional Studies in Marine Science, Elsevier
- Marine Geology, Elsevier
- Journal of Oceanography, Springer